Radially Expanding Euler Paths for Assembly of Truss Structures
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Planning the assembly sequence is a critical challenge for the robotic construction of structures, particularly for maintaining stift-

ness during the construction process. To aid the assembly sequence planning for truss structures, this paper presents an algorithm for

sampling Euler paths which expand radially from a starting node. We show that such paths are desirable as they result in intermedi-

ate structures with dramatically higher natural frequency than those from randomized assembly sequences. The algorithm is widely

applicable to scenarios where intermediate stiffness is required, such as in-space assembly and manufacturing, and motivates future

research into other sampling strategies for the assembly of truss structures.
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1. Introduction

The robotic assembly of truss structures is promising for au-
tomating ground-based construction tasks" and enabling novel
applications such as the in-space assembly and manufacturing
of support structures.? Some recent approaches to robotic truss
assembly include: assembling cellular structures with a mo-
bile robotic platform,” assembling pre-fabricated struts with
a robotic manipulator,¥ reconfiguring a modular chain,® and
plastically deforming metal rods into wireframe structures.®
For all these approaches, one key challenge is planning the as-
sembly sequence, as many exist for the same truss geometry. A
truss geometry can be represented as a graph with nodes and
edges (Fig. 1), so the assembly sequence corresponds to a path
that traverses all the edges, i.e., an Euler path. However, the
number of possible Euler paths increases rapidly with graph
size,” making it difficult to find optimal assembly sequences
that maximize important performance metrics. For example, the
on-orbit construction of support structures will require main-
taining stiffness and surface precision during assembly to en-
sure structural stability and geometrical accuracy of the final
shape.®

Given the large design space of assembly sequences for truss
structures, previous work has used hierarchical representations
of truss sub-assemblies” and graph search algorithms to find
sequences that optimize specific cost functions.!? While this
approach works well for relatively simple trusses, it scales
poorly with structural complexity. Randomized optimization
techniques, such as particle swarm optimization'" and flower
pollination,'? have shown promise for complex assembly se-
quences, but their computational complexity also increases with
graph size.

An alternate approach to assembly sequence planning for
complex truss geometries is to develop sampling methods for
assembly sequences and understand their performance with rel-
evant metrics. This approach explores the design space and al-
lows identification of heuristics that lead to optimal assembly
sequences, and is the approach taken in the present work. In
particular, we present an algorithm for sampling radially ex-
panding Euler paths for the assembly of truss structures. The
algorithm is based on a classical algorithm for computing Euler
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Fig. 1. Geometries of (a) 2D equilateral triangle and (b) 3D
tetrahedral truss, parameterized by the strut length L and
number of units N. All struts have equal length.

paths through an undirected graph, but incorporates a locally
optimal criterion for selecting edges that minimize distance to
the partially assembled structure. For the application of truss
assembly, we show that such paths are desirable as they result
in stiffer intermediate structures with higher fundamental natu-
ral frequency than other randomized assembly sequences.

The remainder of the paper is organized as follows. Sec-
tion 2. describes the algorithm for radially expanding Euler
paths and the modeling framework for computing the stiffness
of intermediate structures. Section 3. compares the perfor-
mance of this algorithm with a classical algorithm for comput-
ing Euler paths in terms of the fundamental natural frequency.
Finally, Section 4. provides a summary and directions of future
work.

2. Methods

2.1. Radially Expanding Euler Paths

The classical method to compute an Euler path through an
undirected graph is via the route inspection algorithm.” This
algorithm has two steps: First, the minimum number of doubled
edges are added to the graph until it satisfies Euler’s theorem,
which holds that there exists an Euler path if and only if there
are no more than two nodes with odd degree. Typically, this
step is completed by finding a minimum-weight perfect match-



ing that connects the odd degree nodes while minimizing the
total length of the added paths.!® Second, an Euler path is com-
puted through the graph using either the Hierholzer or Fluery
algorithms. For a graph with n edges, the Hierholzer algorithm
has complexity O(n) and finds closed loops in the graph before
concatenating them into one continuous Euler path.'¥ Com-
paratively, the Fluery algorithm has complexity O(n?) and con-
catenates neighboring edges into an Euler path without creating
bridges. Both these algorithms result in randomized Euler paths
that traverse all edges of the graph from a specific starting node.

In this work, we are interested in sampling Euler paths which
radially expand from the starting node. For the assembly of
truss structures, the intuition is that such paths correspond to
sequentially adding struts around the circumference, resulting
in greater stiffness during construction. To this end, we modify
the Fluery algorithm with a specific criterion for adding edges
to the Euler path: only select neighboring nodes that minimize
the Euclidean distance to nodes already in the path. This locally
optimal criterion selects edges closest to the partially assembled
geometry at each step and yields a path that expands radially
outward from the starting node, as illustrated in Fig. 2. The
pseudocode for this algorithm is summarized in Algorithm 1,
with the key selection criterion highlighted in red. As this algo-
rithm is based on the Fluery algorithm, it also has complexity
om?).
2.2. Finite Element Analysis

To understand the stiffness of intermediate structures that re-
sult from radially expanding Euler paths as compared to ran-
domized paths, we use finite element modeling. Specifically,
we compute the fundamental free-free natural frequency of var-
ious intermediate structures resulting from the Euler path, an
important performance metric for the assembly of precise truss
structures.®

Focusing our analysis to the geometries of Fig. 1, we com-
pute a discrete number of intermediate structures from a spe-
cific Euler path and use the finite element software Abaqus to
compute their fundamental natural frequencies fy. Here an “in-

Algorithm 1: Radially Expanding Euler Paths
Input: Eulerian graph G(V, E), node coordinates pos

Output: Euler path epath
1 epath < [random node in G]

2 while epath not complete do

3 u = epath(end)
4 centroid = mean(pos(epath))
5 neighbors = nodal neighbors of u sorted by Euclidean
distance to centroid
6 k=1
7 while node not added to epath do
8 v = neighbors(k)
9 if edge (u,v) is not a bridge then
10 ‘ append v to epath
1 else
12 | k=k+1
13 end
14 end
15 end

16 return epath
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Fig. 2. Radially expanding Euler paths for (a) 2D equilat-
eral triangle and (b) 3D tetrahedral truss that grow from
the starting node highlighted in green.

termediate structure” refers to a truss geometry before all the
struts have been assembled. For the geometric and material
properties, representative values are chosen for carbon fiber-
reinforced plastic (CFRP) struts with length L = 1 m, density
p = 1600 kg/m?, circular cross section with diameter d = 5 cm,
and elastic properties Ey = 325 GPa and and v = 0.3. Lin-
ear beam elements (B31) are used to mesh the geometry with
10 elements along each strut, and all six degrees of freedom
are kinematically coupled between the connected struts at each
node. An eigenvalue analysis is performed to compute the fun-
damental free-free natural frequency.

3. Results

Fig. 3 plots the computed fundamental natural frequencies of
intermediate structures from 25 sampled radially expanding and
randomized Euler paths for both the 2D equilateral triangle and
3D tetrahedral truss. The natural frequencies are plotted against
an assembly percentage that represents the ratio of struts tra-
versed by the path to the total number of struts. Here the Hier-
holzer algorithm was used to compute randomized paths while
Algorithm 1 was used to generate radially expanding paths from
a randomly selected starting node. Table 1 highlights a com-
parison of the minimum natural frequency and compute time
between the two sampling approaches.

The results of Fig. 3 shows that radially expanding paths dra-
matically increase the minimum natural frequency of interme-
diate structures, by up to ~10x and 100x for the equilateral tri-
angle and tetrahedral truss, respectively. The underlying reason
is that the radially expanding paths result in intermediate struc-
tures with minimal unsupported struts. By contrast, the random
paths result in large regions of unsupported struts and hence
lower natural frequencies, as illustrated by the comparison of
vibration mode shapes in Fig. 4.

Additionally, Fig. 3 shows that radially expanding paths re-
sult in decreased variance in natural frequency than the random-
ized paths. This is attributed to the radial symmetry of the truss
geometries of Fig. 1, as all the radially expanding paths have



Radially
Expanding

Natural Frequency, fO [Hz]

40 60 80 100
Assembly [%] Assembly [%]

Fig. 3. Fundamental free-free natural frequency of intermediate structures from 25 radially expanding and

randomized Euler paths for (a) 2D equilateral triangle and (b) 3D tetrahedral truss. Dashed lines plot data for

all sampled paths and solid lines plot the average. Radially expanding paths result in structures with significantly
higher natural frequency.
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Fig. 4. Fundamental free-free vibration mode shapes from a radially expanding and randomized
Euler path for (a) 2D equilateral triangle and (b) 3D tetrahedral truss at 50% assembly. The
radially expanding path results in minimal unsupported struts.

Euler Path Geometry | Minimum Natural Frequency, f, [Hz] | Compute Time [min]
. . Fig. la 6.23 110
Radially Expanding Fig, T 3 30
Fig. l1a 0.63 100
Random Fig. 1b 0.84 110

Table 1. Comparison of minimum natural frequency and compute time for the sampled radi-
ally expanding and random Euler paths in Fig. 3.

similar intermediate structures regardless of the starting node. ized paths (cf. Fig. 4b). Together, the results of Fig. 3-4 demon-
Further, for the tetrahedral truss, radially expanding paths main- strate that radially expanding paths significantly improve inter-
tain a nearly constant natural frequency throughout the assem- mediate stiffness and highlight the effectiveness of Algorithm 1
bly sequence. This is because the vibration mode of each in- in sampling Euler paths for complex truss geometries.

termediate structure is dominated by the local deformation of
a few unsupported struts around the circumference, unlike the
global deformation of many unsupported struts for the random-



4. Conclusion

This paper has presented an algorithm for generating radi-
ally expanding Euler paths through an undirected graph. The
key differentiator of this algorithm is a locally optimal criterion
for selecting nodes that minimize distance to the partially as-
sembled geometry at each step. For the application of truss as-
sembly, such paths are shown to dramatically increase the nat-
ural frequency of intermediate structures by up to two orders
of magnitude as compared to randomized paths. Radially ex-
panding Euler paths are therefore desirable for a wide range of
assembly applications where intermediate stiffness is required,
such as ground-based robotic construction and in-space assem-
bly and manufacturing.

One caveat of the algorithm presented in this paper is that it
is not as efficient as the classical Hierholzer algorithm for Euler
paths and runs with complexity O(n*) where n is the number
of edges. Future work incorporating the selection criterion into
the Hierholzer algorithm may decrease the complexity to O(n).
Additionally, this work motivates research into other sampling
strategies for truss assembly sequences to further explore the
design space and develop heuristics for optimizing multiple per-
formance metrics, e.g., stiffness, surface precision, and collision
avoidance.
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