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PASSIVE GRAVITY GRADIENT CAPTURE FOR IN-SPACE
ASSEMBLY AND MANUFACTURING

Harsh G. Bhundiya; Zachary C. Cordero; and Michael A. Marshall*

In-space assembly and manufacturing (ISAM) offers an opportunity to overcome the volume
limitations of the rocket fairing and construct large structures optimized for loads in space. A
key challenge for the design of ISAM spacecraft is the design of the attitude control system,
which is complicated by the varying mass properties and environmental disturbances over
long timescales of construction. In addition, it is unclear how disturbances such as gravity
gradients can be advantageously used to minimize attitude control requirements. In this
paper, we explore the strategy of gravity gradient capture, which refers to planning a passive
attitude trajectory that results in a stable orientation after construction. We illustrate the
concept with two case studies on the construction of truss structures—a 2D triangle unit cell
and a 3D curved gridshell—by spacecraft in circular orbits. Based on the time reversibility of
the equations of motion, we compute initial conditions that result in gravity gradient capture
by solving the equations backward in time, considering the changes in mass properties from
the prescribed construction sequence. Our analysis shows the feasibility of passive gravity
gradient capture and the sensitivity of initial conditions to perturbations, which motivates
future work on optimal attitude trajectories for ISAM spacecraft.

INTRODUCTION

The on-orbit construction of support structures, i.e., in-space assembly and manufacturing (ISAM), can
dramatically enhance the performance of modern space systems for applications such as astronomy, com-
munications, and remote sensing. The construction of truss support structures, in particular, has been of
interest for supporting large space telescopes,'! mesh reflector antennas,” and for enabling novel applications
like space-based solar power.> For such applications, ISAM overcomes the limitations of the rocket fair-
ing, enabling the construction of structures optimized for in-space loads with apertures larger than currently
feasible with modern deployable technologies.*> Numerous concepts for ISAM of truss support structures
are currently under development, from robotic assembly of trusses,>® extrusion of carbon fiber-reinforced
thermoplastic trusses,’!! and deformation processing of trusses from ductile feedstock.!'?

An important challenge for the on-orbit construction of large structures is the design of the attitude control
system (ACS) for ISAM spacecraft. Typically, ACSs are designed to reject environmental disturbance torques
such as atmospheric drag, solar radiation pressure, and gravity gradients.'> However, for ISAM missions, the
ACS design is complicated by the varying mass properties and disturbance torques over the long fabrication
timescales. For the construction of large truss structures, our previous analysis'# has shown that maintaining a
fixed orientation with limited attitude control authority results in fabrication times between months and years
for 200-m diameter structures. Over such long timescales, the effects of the environmental disturbances on
spacecraft attitude dynamics are coupled with the mass property changes, posing challenges to robust ACS
design.
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At the same time, environmental disturbances provide opportunities for passive attitude control and sta-
bilization. For example, gravity gradients have historically been used to stabilize long, “skinny” satellites
such as the NASA Long Duration Exposure Facility.'> !¢ Similarly, large spacecraft such as the International
Space Station routinely use disturbance torques to minimize attitude control requirements. Two common
approaches involve orienting the spacecraft to torque equilibrium attitudes which equilibrate multiple dis-
turbance torques'” and planning slew maneuvers with disturbance torques to avoid saturation of momentum
actuators.'® For ISAM spacecraft which undergo changes in mass properties over long timescales, it is
currently unclear how environmental disturbances such as gravity gradients can be advantageously used to
minimize attitude control.

In this paper, we explore the feasibility of a passive attitude control strategy for ISAM spacecraft that
relies on the coupled effects of changes in mass properties and gravity gradients. The approach, referred
to as passive gravity gradient capture, plans a passive attitude trajectory during ISAM such that the final
orientation remains stable in the presence of gravity gradients, as illustrated in Fig. 1. The benefits of this
approach are that there is no requirement for attitude control during the construction sequence itself, and there
is no tumbling after the the construction is complete. Passive gravity gradient capture has been previously
demonstrated, e.g., for the deployment of booms on the Radio Astronomy Explorer spacecraft launched in
1968 and 1973.192! These spacecraft consisted of four 200-m long deployable antenna booms arranged in
a cruciform geometry and two additional 100-m long damper booms. A rigid body dynamics model was
used to optimize the timing of boom deployment in multiple phases to achieve passive attitude trajectories
with stable pitch oscillations after deployment.!® These missions successfully demonstrated the feasibility
of gravity gradient capture for boom deployment, but the concept remains largely unexplored in the context
of ISAM. To that end, the objective of this paper is to understand the feasibility of passive gravity gradient
capture for ISAM through case studies involving the construction of truss support structures.

Initial condition =P Passive attitude trajectory === Stable final orientation

Figure 1: Gravity gradient capture for ISAM spacecraft: a passive attitude trajectory from a specific initial
condition yields a stable final orientation after the construction process.

MOTIVATING EXAMPLE

We begin with a motivating example to illustrate the importance of environmental disturbance torques
on the attitude dynamics of ISAM spacecraft. Consider a simplified model of a thin cylindrical disk with
constant density p, constant height-to-diameter ratio ¢ < 1, and a time-varying diameter D(¢) (Fig. 2). As
a first approximation, an increase in the diameter of the disk models the deployment or construction of an
antenna aperture in space.

We are interested in a scaling analysis to understand the angular accelerations of the disk from its varying
mass properties and environmental disturbances in orbit. To this end, we derive scaling relations for the
magnitudes of angular acceleration as a function of disk diameter and diameter growth rate, following a
methodology similar to a previous length scaling analysis.”?> An important difference in the present analysis
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Figure 2: Thin, circular disk with varying diameter D(¢)

is the additional torque from the diameter growth rate used to represent the construction rate for the ISAM
process.

We model the attitude dynamics of the disk in a circular orbit using the Newton-Euler equations of motion
for a rigid body, '3

Tom|w +w x [Iea]w = Tvp + Te + Tap + Tsp (D

Here, dot notation denotes differentiation with respect to time ¢, w is the angular velocity of the disk with
respect to an inertial frame, and [I¢)] is the time-varying mass moment of inertia about its center of mass,
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The terms on the right-hand side of Eq. 1 represent the torques from the varying mass distribution (MD)
and environmental disturbances due to gravity gradients (GG), atmospheric drag (AD), and solar radiation
pressure (SP). The torque from the time rate of change in disk inertia is given by

o = —[Tem]w. 3)

The gravity gradient torque, which results from variations in the gravitational force at different points on the
body, is modeled as!3

166 = 3n*(Ron x [Iom]Rew), 4

where n = 2x/T is the angular velocity of a circular orbit with period T', and Re )y is the unit vector
pointing from the center of the Earth to the center of mass of the spacecraft. The other two disturbances
result from collisions with atmospheric particles and photons from solar flux, imparting atmospheric drag
and solar radiation pressure on the disk. These disturbances apply forces to the spacecraft, and if the center
of pressure is offset from the center of mass, torques of the form

T=0xDF, o)

where ¢ is the vector from the center of mass to the center of pressure and F' is the disturbance force. The
disturbance forces due to atmospheric drag and solar radiation pressure are'

1 R
Fyp = _§PACDAC'U2'U» (6)
Fsp = 2P A¢ cos? y4n, (7)

where p 4 is the atmospheric density at the orbit altitude, Cp is the drag coefficient, Ao is the cross-sectional
area of the disk normal to the velocity vector, v is the orbital velocity vector with magnitude v and direction



v, P is the effective solar radiation pressure, ;s is the angle between the surface normal and the Sun, and 72 is
the surface normal vector. For simplicity, Eq. 6 does not account for the rotation rate of Earth’s atmosphere.

To derive scaling relations for the angular accelerations due to these disturbance torques, we make several
simplifying assumptions similar to the previous analysis.?? First, we assume that the disk spins slowly such
that its angular velocity is approximately equal to the orbit angular velocity, i.e., ||w||2 & n. This is a
reasonable assumption for nadir-pointing spacecraft and simplifies Eq. 1 such that the angular acceleration
«a = w is proportional to the moment of inertia, i.e.,

r

o= T (8)
Next, we assume that the offset vector § remains in the plane of the disk (due to the small thickness of the
disk) and that its magnitude is proportional to the disk’s diameter, i.e., § = k7 D(t) where k7 is a scale factor.
A scale factor of Kk = 0.01 represents a moment arm that is 1% of the diameter of the disk. To estimate
the maximum angular accelerations from the atmospheric drag and solar radiation pressure, we then consider
the case where the cross-sectional area of the disk is perpendicular to the orbital velocity and the Sun vector.
Finally, for the gravity gradient disturbance, we consider orientations that yield the maximum torque. With
these assumptions, the magnitudes of the angular accelerations due to these disturbance torques are

amp = 5nDD™1, )

o6 = m (10)
e an
asp — % -2 (12)

Equations 9-12 demonstrate that the angular acceleration from the rate of change of inertia (MD) scales
with the ratio of the diameter growth rate to the instantaneous diameter. In contrast, the angular acceleration
due to gravity gradients (GG) is independent of size and scales only with n2, whereas the angular acceler-
ations due to atmospheric drag (AD) and solar pressure (SP) scale with D~2. To understand the relative
magnitudes of the angular accelerations, Fig. 3 plots Eqs. 9-12 as a function of the disk’s diameter for three
different orbit regimes, with the parameters listed in Table 1. In Table 1, LEO, MEO, and GEO denote low
Earth orbit, medium Earth orbit, and geosynchronous Earth orbit, respectively. The figures plot ayp for two
different constant diameter growth rates: D =10""m/sis representative of the deployment of reflector an-
tennas that achieve diameters of up to 25 m in minutes,”> whereas D =10"%m/sis representative of a slower
construction process such as the extrusion of composite feedstock.’

Parameter Value

€ 0.1
KT 0.01
p 79 kg/m?

o4 (LEO)  6.97 x 10~13 ke/m®
o4 (MEO)  7.86 x 1030 ke/m®
pa (GEO)  1.29 x 10~ 7! kg/m?
LE 3.986 x 10'* m3/s2
P 4.56 x 1076 N/m?

Table 1: Disk and environmental disturbance parameters

Figure 3 shows that for faster diameter growth rates (D = 10! m/s), the largest angular acceleration at
all orbit altitudes results from the rate of inertia change, with negligible effects due to environmental distur-
bances. On the other hand, for slower diameter growth rates (D = 10~2 m/s), the environmental disturbances
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Figure 3: Angular accelerations as a function of disk diameter for different orbit regimes: low Earth orbit
(500 km), medium Earth orbit (10,000 km), and geostationary orbit (35,786 km).

are the dominant contributors to the attitude dynamics at some diameter scales. In LEO, atmospheric drag
dominates for smaller diameters (D < 5 m), whereas the gravity gradient dominates for larger diameters.
Likewise, in MEO and GEO, solar radiation pressure and gravity gradients are dominant. As the diameter
growth rate decreases further (D < 1073 m/s), the environmental disturbances increasingly dominate the
attitude dynamics. Taken together, this scaling analysis demonstrates the importance of understanding the
coupled effects of mass property changes and environmental disturbances on the attitude dynamics of ISAM
spacecraft, particularly for slower construction rates.

PASSIVE GRAVITY GRADIENT CAPTURE

The scaling analysis in the previous section has shown that gravity gradients are length independent and
dominate the environmental disturbances in LEO for large diameters (D > 5 m) and slow diameter growth
rates (D = 1073 m/s). For real truss structures, the cross-sectional area of sparsely distributed struts is also
much smaller than that of a solid disk, reducing the relative effects of atmospheric drag and solar radiation
pressure. Hence, we focus our attention on the effects of gravity gradients and study how changes in mass
properties and gravity gradients affect the attitude dynamics of ISAM spacecraft.

We specifically model the spacecraft and fabricated structure as a single combined control volume with



relative motion and mass redistribution from the construction process. Assuming a circular orbit with angular

velocity n = 27/T and period 7', the non-dimensional equations of motion of the variable-mass system
24,25
are”™

q =mQ(w)g, 13)

w = —27[Icm) ™M (@ x [Tom]@) + éwp + éao. (14)

where dot notation denotes derivatives with respect to non-dimensional time ¢ = ¢ /7. In Eq. 13, q is the unit
quaternion describing the orientation of the body frame with respect to the inertial frame and (&) is the

opelrator24
0 —Qp -y -0,
s |Gx 0 @ =0y
o) = Gy —@. 0 @y as)
O, & -y O

The terms in Eq. (14) are expressed in the body-fixed frame. Specifically, @ = w/n is the non-dimensional
angular velocity of the body frame with respect to the inertial frame and [/ (t)] is the time-varying moment
of inertia matrix about the instantaneous center of mass. Additionally, &yp and &g are the non-dimensional

angular accelerations from the varying mass properties and the gravity gradient torque, given by?>2°
. B h
amp = —[Ionm] ™" ([ICM]W +w X hou + 2C7TM> ; (16)
dee = 6nlIom) ™ (Rour x [Tou]Rear ) | a7
(18)
where
N
hcy = Zmi(""i —roum) X (P — Tom) (19)
i=1

is the angular momentum of the bodies inside the control volume relative to the instantaneous center of
mass, and B¢y is the unit vector pointing from the orbit center to the instantaneous center of mass. The
angular momentum is a function of the positions 7; of an arbitrary number of point masses m; within the
control volume and the position ¢y, of the instantaneous center of mass. For a construction process that
sequentially extrudes struts to fabricate truss structures, each point mass m; represents a strut that moves
relative to the spacecraft.

Together, Eqgs. 13—19 govern the attitude dynamics of an ISAM spacecraft with angular accelerations from
both the changes in mass distribution (&yp) and the gravity gradient disturbance (&gg). We are interested in
modeling the attitude dynamics of ISAM spacecraft during long construction timescales and understanding
how gravity gradients can be used advantageously to reduce the required torque and angular momentum
storage for the ACS. Importantly, Eqs. 13-19 are invariant under the change of variables (f, &) — — (£, @).
This implies that the system is time reversible, i.e., its trajectories are symmetric forward and backward in
time.?’

Time reversibility provides a computational tool for assessing the feasibility of passive gravity gradient
capture. There are multiple equilibrium orientations where the principal inertia axes are aligned with the
local-vertical-local-horizontal (LVLH) orbit frame such that there are no gravity gradient torques on a space-
craft.!>?8 Moreover, gravity gradients provide a stabilizing restoring torque when the minimum principal
inertia axis is aligned with the orbit radius vector.?® As a result, if an ISAM spacecraft can be passively ma-
neuvered into this final orientation solely from the changes in mass distribution and gravity gradients, active
attitude control is unnecessary during the construction process. In what follows, we present two case studies
that demonstrate the feasibility of gravity gradient capture for two relevant truss structures.



TRIANGLE UNIT CELL

We first demonstrate passive gravity gradient capture for the construction of a 2D equilateral triangle in
the orbit plane (Fig. 4). We assume a spacecraft in circular orbit sequentially extruding struts, a construction
approach that is representative of many of the candidate ISAM processes for truss structures.”-® !> The equi-
lateral triangle is relevant as a unit cell for larger truss structures such as the curved gridshell studied in the
next section.

For this 2D geometry, the motion is restricted to the orbit plane. As a result, the moment equilibrium of
Eq. 14 simplifies because the only relevant rotation is the pitch 6, about the orbit-normal axis,

0, =3m (Izz ) sin (26,) + 67 ([zz> cos (26,) (Izz> (QZ + 1) 5 (Izz> . (20)

The first two terms of Eq. 20 correspond to the angular accelerations from the gravity gradients, and the last
two terms correspond to the rate of change in the mass distribution. The moments of inertia I, Iy, and I,
are the time-varying components of the moment of inertia matrix about the instantaneous center of mass,

La(D) Ly(d)
[IC]\/[] = Izy(t) Iyy(t) NE @2n
I.(t)
and h, is the non-zero component of the angular momentum from the relative motion of the struts and

spacecraft relative to the center of mass (Eq. 19). Since there are no external forces on the body (besides
gravity), the instantaneous center of mass remains on the circular orbit.

Figure 4: Construction of a 2D triangle unit cell in the orbit plane. Gravity gradient capture is achieved
when the triangle faces radially inwards or outwards, i.e., 0, =0 or 0, = 7.

To compute the change in mass distribution during construction, we consider a cubic spacecraft with side
length s and mass mgc sequentially extruding three struts of length L and linear density pA to construct an
equilateral triangle. We model each strut as a slender rod of varying mass and length, with a smooth extrusion
profile with zero velocity, acceleration, and jerk at the end points.!* The extrusion of all three struts occurs
during the period ¢ € [0,%F], where  represents the construction timescale in number of orbits. After the
three struts have been extruded, the final moment of inertia matrix of the truss and spacecraft about their
respective centers of mass are:

1
1
[Ir) = JpAL* | 1, (22)
2

1
Isc] = 6m508213x37 (23)



where I3, 3 is an identity matrix. For this specific geometry, Eq. 20 can be further simplified using the final
mass and inertia ratios between the truss and spacecraft,

_ 3pAL

M (24)

n ,
msc
3pAL\ [ L\>
= (ﬂ’;gc) (S) . (25)

For given mass and inertia ratios (n,7;) and a construction timescale (£7), Eq. 20 can be numerically
integrated to find the orientation of the during the construction of the triangle unit cell.

The final orientation that results in zero disturbance torque consists of the triangle facing radially inward
or outward (f, = 0 or §, = ), as depicted in Fig. 4. To find attitude trajectories for passive gravity
gradient capture, we use time reversibility to solve Eq. 20 backward in time from these final orientations.
Numerically, this involves integrating from some final time 7z to time ¢ = 0 and specifying the time-varying
mass distribution starting from the final configuration and ending in the initial configuration.

Figures 5 and 6 plot two representative trajectories for passive gravity gradient capture that both result in
the final orientation §, = 0. The figures plot the trajectories in the phase plane (6., 0, /n) with the pitch
rate non-dimensionalized by the orbit angular velocity n. The first trajectory (Fig. 5) begins with a positive
angular velocity that decreases monotonically to zero as the struts are extruded. This trajectory is dominated
by the torques from the rate of change in inertia, i.e., the last two terms of Eq. 20, due to the high initial
angular velocity of the spacecraft. The second trajectory (Fig. 6) begins with a negative angular velocity but
reaches an equilibrium orientation with zero angular velocity after the extrusion of each strut. The gravity
gradient torque has a larger effect on this trajectory and causes its angular velocity to change signs multiple
times. Together, the trajectories demonstrate the feasibility of using the combined effects of the gravity
gradients and the construction process to yield a desirable final orientation.
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Figure 5: Passive trajectory for gravity gradient capture of the 2D triangle with (17, 77, tr) = (0.03,2.5,1).

Energy Criterion for 2D Gravity Gradient Capture

The passive trajectories of Figs. 5 and 6 achieve a perfect equilibrium orientation with zero disturbance
torque at the end of construction. However, feasible trajectories for passive gravity gradient capture include
any trajectory that results in a final state that remains stable in the presence of gravity gradient torques.
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Figure 6: Passive trajectory for gravity gradient capture of the 2D triangle with (nM,m,fF) =
(0.06,10,1.5).

For the 2D triangle unit cell, we can classify the stability of the final state by considering the total energy
H(0.,0.) of the spacecraft after construction, which is the sum of its rotational kinetic and gravitational
potential energies,?

H(0.,0,) = %Izz(fF)(éan + %ﬂ (Lo (tr) — Iy (tr)) cos(20s) — 21, (fF) sin(26.)) . (26)
3 ~—————r _————

0, [rad]

Figure 7: Contours of H(6,, éz) for trajectories with no change in mass distribution. The critical energy H*
corresponds to the transition between stable oscillations and complete revolutions, similar to a pendulum.

Figure 7 depicts contours of the total energy H (6., éz) (Eq. (26)) in the phase plane. In the absence of
mass redistribution, the gravity gradient torque causes the spacecraft to oscillate back and forth near the



equilibrium points (#,6,) = (0,0) and (6,6.) = (,0), similar to a pendulum. As a result, 2D attitude
trajectories conserve the total energy after construction, i.e., for t>1i r. Additionally, there is a critical
energy H*, below which the spacecraft experiences a stable oscillation about an equilibrium point, and above
which it tumbles. This critical energy corresponds to the unstable equilibrium points (6,,6,) = (£7/2,0)
that separate the resonance islands, i.e.,

~ ~

H* = H(£7/2,0) = —%n:) (Lna(tr) — Ly (tp)) . (27)

Using Eq. (27), we can classify the final state of the spacecraft as stable if H (# r) < H* and unstable if
H(tp) > H*.

ézo/ n [rad]
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Figure 8: Range of initial conditions for gravity gradient capture of the 2D triangle with (17,77, tr) =
(0.03,2.5,1).

Using this energy criterion, we can determine the full range of initial conditions for passive gravity gradient
capture of the 2D triangle unit cell, as depicted in Fig. 8 for (nas,n7,tr) = (0.03,2.5,1). The green and
red regions in Fig. 8 represent initial conditions that respectively result in stable and unstable final states. For
initial angular velocities of 920 /n > 18.5 and 920 /m < —5, Fig. 8 shows that all initial conditions result
in unstable final states. However, within this range, there is a wide range of possible initial conditions for
gravity gradient capture, i.e., the green bands in the phase plane. The widths of the bands vary between
AB.o/n = [0.5, 2], with wider bands near zero angular velocity. Here, the larger number of initial conditions
with positive angular velocity is the result of the prograde circular orbit with positive angular velocity (n > 0)
coupled with the fact that the increase in inertia during construction decreases the angular velocity. For a
retrograde orbit (n < 0), the green regions are reflected about the horizontal axis.

Initial Condition Sensitivity

An important practical consideration for passive gravity gradient capture is the sensitivity of the final state
to the corresponding initial conditions. To understand the sensitivity of the initial conditions for the 2D
triangle unit cell, we consider the effect of a small initial tilt (¢) out of the orbit plane on the final state. The
tilt angle ¢ represents a rotation about an axis parallel to the orbit plane such that the initial orientation is
specified by the ZYX Euler angle sequence (6.0, ¢, 0) relative to the orbit frame (cf. Fig. 4).

Figures 9 and 10 plot representative trajectories for passive gravity gradient capture using the initial condi-
tion of Fig. 5 with the addition of initial tilt angles ¢ = 1° and ¢ = 5°. By adding the initial tilt, the rotation
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of the spacecraft is no longer restricted to the orbit plane; for this reason, these trajectories are solutions to
the full 3D equations of motion (Eqs. 13—19). The figures plot the trajectories in the phase plane of the three
Euler angles and the three angular velocity components in the body-fixed frame. With the smaller tilt angle
¢ = 1°, the trajectory is similar to the corresponding trajectory with zero tilt (Fig. 5), but the spacecraft
experiences small oscillations in roll and yaw after strut extrusion. These oscillations are small enough that
the final state remains near the equilibrium point and achieves gravity gradient capture. However, with the
larger tilt angle ¢ = 5°, the initial angular velocity of the spacecraft causes the tilt angle to grow, resulting in
a final state that is far from the desired equilibrium point.
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Figure 9: Passive trajectory for gravity gradient capture of the 2D triangle with an initial tilt of ¢ = 1°.
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Figure 10: Passive trajectory for gravity gradient capture of the 2D triangle with an initial tilt of ¢ = 5°.

To classify the stability of the final state due to the initial conditions plus tilt, we linearize the equations
of motion about the final state (g(tr),@(tr)). The nonlinear system is unstable if any eigenvalues of the
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corresponding Jacobian matrix have positive real part, and are linearly stable otherwise.?’ Using this linear
stability criterion, Figs. 11 and 12 plot the stability of the final states due to the range of initial conditions
from Fig. 8 for (nar,nr,tr) = (0.03,2.5,1) with the initial tilt angles ¢ = 1° and ¢ = 5°. The smaller tilt
angle ¢ = 1° again has a minor effect on the range of stable initial conditions; however, the larger tilt angle
¢ = 5° destabilizes many of the previously stable final states, only leaving stable initial conditions within a
narrow angular velocity range A6 /n & [—5, 5]. Because the angular velocity is non-dimensionalized with
respect to the orbit angular velocity, higher orbit altitudes are more sensitive to the initial tilt. Thus, even
though the 2D triangle unit cell has a wide range of initial conditions that result in gravity gradient capture,
the final states are sensitive to initial condition perturbations such as tilt out of the orbit plane.
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Figure 11: Range of initial conditions for passive gravity gradient capture of the 2D triangle with an initial
tilt of ¢ = 1°.
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Figure 12: Range of initial conditions for passive gravity gradient capture of the 2D triangle with an initial
tilt of ¢ = 5°.
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CURVED GRIDSHELL

To understand the feasibility of gravity gradient capture for more complex truss geometries, we extend the
above analysis to the gravity gradient capture of a 3D curved gridshell, an efficient support structure geometry
for antennas and telescopes.? We again assume a spacecraft in circular orbit sequentially extruding struts to
construct the gridshell.

To compute passive attitude trajectories for gravity gradient capture, we solve the 3D equations of motion
(Egs. 13-19) backward in time from a stable equilibrium orientation with zero gravity gradient torque, similar
to the approach in 2D. For the gridshell, this stable orientation occurs when the principal inertia axes are
aligned with the orbit frame such that I, < I, < I..,'>? as depicted in Fig. 1. Here, the gridshell has
diameter D, focal length-to-diameter ratio F'/D, average strut length L, strut linear density pA, and total
mass myp after construction, and the cubic spacecraft has side length s and mass mg¢ after construction.
To specify the construction sequence, we assume that the struts are sequentially extruded following an Euler
path that expands radially outward from the center of the gridshell, as described in our previous work.'* With
these assumptions, Fig. 13 plots a trajectory for passive gravity gradient capture for a construction timescale
of tp = 1 with the gridshell and spacecraft parameters of Table 2. Compared to the 2D trajectories for
the triangle unit cell, this trajectory is significantly more complex due to the more elaborate construction
sequence and coupled effects between the inertia change and gravity gradient disturbance.
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Figure 13: Representative passive trajectory for gravity gradient capture of the 3D curved gridshell.

Parameter Value

D 20 m
F/D 0.5

L/D 0.1

pA 0.25 kg/m
s 2m

mr 140 kg
msc 500 kg

Table 2: Gridshell and spacecraft parameters
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Initial Condition Sensitivity

Similar to the 2D case, the sensitivity of initial conditions remains of practical importance for passive
gravity gradient capture of the curved gridshell. To understand this sensitivity, we use a Monte Carlo analysis
with randomized initial conditions applied to the trajectory of Fig. 13. We uniformly and independently
perturb the initial orientation and angular velocity within the perturbation radii of 66 and dw, respectively, as
depicted in Fig. 14. Since uniform sampling of individual Euler angles yields a biased distribution, we sample
unit quaternions along a random axis with a uniformly distributed angle § = U(0, §0),>' and subsequently
convert them into Euler angles. We similarly sample angular velocities along a random axis with uniformly
distributed norm ||0w||s = U(0, dw). With this approach, we integrate the equations of motion forward in
time and classify the linear stability of the final state for a total of 5000 randomly sampled perturbations.

0.05

e
= 0
<
S
-0.05
0.05 ™ : > )
\\ _— : - 05
0 \\\K///// 0 . =
50, [rad] -0.05  -0.05 56, [rad] (3(’;)}1 [rad] -05 -05 5o, [rad]

Figure 14: Random perturbations to initial orientation and angular velocity, uniformly sampled within the
perturbation radii of 660 = 0.05 and ||d&||2 = 0.5.

Figure 15 plots the results of the Monte Carlo analysis as slices through the perturbation space. The
results show that only certain perturbation directions (e.g., 46, /80, ~ —1) achieve linearly stable final
states. Using the linear stability criterion, the maximum perturbation radii for which 90% of the perturbed
initial conditions achieve stable final states are 50* ~ 7.5 x 1073 rad and ||d@||5 =~ 0.05 rad. These values
are computed by plotting a histogram of the sampled perturbations and estimating the critical radii at which
90% of them satisfy linear stability at the final state. Due to the normalization of the angular velocity with
the orbit angular velocity, the angular velocity sensitivity increases for higher orbit altitudes. For example,
in LEO (n = 1073 rad/s), the critical perturbation radius is ||dw]||5 ~ 10 arcsecond/s, but it decreases to
|[6w|]5 =~ 0.6 arcsecond/s in GEO (n = 7 x 107 rad/s). These are stringent pointing requirements to
achieve with modern attitude determination and control systems.’> Additionally, the high initial angular
velocity required for the trajectory in Fig. 13 may not be compatible with the angular rate requirements on
sensitive instruments and sensors such as star trackers.

Decreased Initial Condition Sensitivity with Gravity Gradient Boom

An approach to decrease the initial condition sensitivity for passive gravity gradient capture is to deploy
a boom along the orbit radius vector before starting the construction process. Intuitively, the additional
boom inertia helps stabilize the trajectory by maintaining the minimum principal inertia axis along the orbit
radius vector. As an example, consider a gravity gradient boom deployed along the gridshell axis (Fig. 16)
such that the final stable orientation consists of the gridshell facing either toward or away from Earth. The
required boom length Lp and tip mass m; to maintain this stable orientation satisfy the inertia inequality
I < I, < I.,. We can estimate the required boom length by modeling the boom as a slender rod with
linear density (pA)p and the gridshell as a circular plate of diameter D with height » and mass my, as
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Figure 15: Stability of passive gravity gradient capture due to perturbations to initial conditions. Green dots
represent perturbations that result in stable final states, whereas red dots result in unstable final states.
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Using the parameters in Table 2, Fig. 17 plots the minimum boom length L g as a function of the gridshell
geometry for a boom with a constant tip mass m; = 50 kg and a boom density equivalent to the strut density,
ie., (pA)p = pA. The minimum boom length scales with the mass of the truss, i.e., quadratically with

diameter and inversely with strut length (Eq. 29).

To understand the effect of the boom on the trajectories for passive gravity gradient capture, we integrate
the equations of motion backwards in time from the final configuration with the additional inertia of the
boom. Figure 18 plots a representative trajectory for the gridshell and spacecraft parameters of Table 2 after
the initial deployment of a boom of length L = 50 m, tip mass my = 50 kg, and boom density equivalent to
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Figure 16: Deployment of a gravity gradient boom followed by construction of the curved gridshell.
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Figure 17: Minimum required boom length Lp as a function of gridshell geometry.

the strut density, i.e., (pA) g = pA. The results indicate that the trajectory has an initial angular velocity with
a norm four times smaller than the trajectory without the boom (Fig. 13). In addition, the results of a Monte
Carlo analysis analogous to the previous subsection with 5000 randomly sampled perturbations suggest that
the boom significantly reduces the sensitivities to initial orientation and angular velocity perturbations. The
Monte Carlo estimates of the maximum perturbation radii (66* ~ 0.06 rad and ||d@||3 ~ 1.05 rad) are an
order of magnitude larger than the maximum perturbation radii sans boom. Thus, a gravity gradient boom
can significantly reduce the initial condition sensitivity of trajectories for passive gravity gradient capture.
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Figure 18: Representative passive trajectory for gravity gradient capture of the 3D curved gridshell after
deployment of a gravity gradient boom.

CONCLUSION

This paper has explored the combined effects of mass property changes and gravity gradient disturbances
on the attitude dynamics of spacecraft during in-space assembly and manufacturing (ISAM). A scaling analy-
sis determined that the gravity gradient torque is the dominant disturbance torque on ISAM spacecraft in low
Earth orbit. Motivated by this analysis, a passive approach to attitude control during ISAM was proposed that
exploits gravity gradients to achieve a stable orientation at the end of an ISAM process. The feasibility of this
approach, referred to as passive gravity gradient capture, was established via case studies on the construc-
tion of a 2D triangle unit cell and a 3D curved gridshell. Subsequent analyses demonstrated that the initial
conditions for passive gravity gradient capture were highly sensitive to perturbations. In an effort to reduce
this initial condition sensitivity, a gravity gradient boom was deployed before the start of the construction
of a curved gridshell. For this specific example, the gravity gradient boom reduced the sensitivity of initial
conditions by an order of magnitude. More generally, designing an ISAM process to maintain the minimum
principal inertia axis in the direction of the orbit radius vector can facilitate the robust passive gravity gradient
capture of large space structures.
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